LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway
نویسندگان
چکیده
Development of chemoresistance is a persistent problem during cancer treatment. Long non-coding RNAs (LncRNAs) are currently emerging as an integral functional component of the human genome and as critical regulators of cancer development and progression. In the present study, we investigated the role and molecular mechanism of H19 lncRNA in chemoresistance development by using doxorubicin (Dox) resistance in breast cancer cells as a model system. H19 lncRNA expression was significantly increased in anthracycline-treated and Dox-resistant MCF-7 breast cancer cells. This H19 overexpression was contributed to cancer cell resistance to anthracyclines and paclitaxel as knockdown of H19 lncRNA by a specific H19 shRNA in Dox-resistant cells significantly improved the cell sensitivity to anthracyclines and paclitaxel. Furthermore, gene expression profiling analysis revealed that a total of 192 genes were associated with H19-mediated Dox resistance. These genes were enriched in multiple KEGG pathways that are related to chemoresistance. Using genetic and pharmacological approaches, we demonstrated that MDR1 and MRP4 were major effectors of H19-regulated Dox resistance in breast cancer cells as MDR1 and MRP4 expression was markedly elevated in Dox-resistant cells while dramatically reduced when H19 was knocked down. Moreover, we found that CUL4A, an ubiquitin ligase component, was a critical factor bridging H19 lncRNA to MDR1 expression, and a high tumor CUL4A expression was associated with low survival in breast cancer patients treated with chemotherapy. These data suggest that H19 lncRNA plays a leading role in breast cancer chemoresistance, mediated mainly through a H19-CUL4A-ABCB1/MDR1 pathway.
منابع مشابه
LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK
Breast cancer is a common malignancy in women. Acquisition of drug resistance is one of the main obstacles encountered in breast cancer therapy. Long non-coding RNA (lncRNA) has been demonstrated to play vital roles in both development and tumorigenesis. However, the relationship between lncRNAs and the development of chemoresistance is not well established. In the present study, the high expre...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملThe silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway
Introduction Temozolomide (TMZ) is commonly used for glioma chemotherapy. However, TMZ resistance limits the therapeutic effect of TMZ in glioma treatment. LncRNA-H19 acts as an oncogenic LncRNA in some types of cancers and has been reported to be up-regulated in glioma. Materials and methods In our present study, we established TMZ-resistant glioma cells (U-251TMZ and M059JTMZ) to explore th...
متن کاملLncRNA plasmacytoma variant translocation 1 is an oncogene in bladder urothelial carcinoma
Bladder cancer (BC) is the most lethal malignant cancer of the genitourinary system, and bladder urothelial carcinoma (BUC) is the most common type of BC. The long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) is overexpressed in several malignant tumors, including BC. Using a lncRNA array and quantitative real-time PCR, we detected greater expression of PVT1 in BUC tissue...
متن کاملPD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways
Programmed cell death ligand 1 (PD-L1) is an immunosuppressive molecule expressed on tumor cells. By interacting with programmed cell death-1 (PD-1) on T cells, it inhibits immune responses. Because PD-L1 expression on cancer cells increases their chemoresistance, we investigated the correlation between PD-L1 and multidrug resistance 1/ P-glycoprotein (MDR1/P-gp) expression in breast cancer cel...
متن کامل